331 research outputs found

    All-Optical Production of Chromium Bose-Einstein Condensates

    Full text link
    We report on the production of ^52Cr Bose Einstein Condensates (BEC) with an all-optical method. We first load 5.10^6 metastable chromium atoms in a 1D far-off-resonance optical trap (FORT) from a Magneto Optical Trap (MOT), by combining the use of Radio Frequency (RF) frequency sweeps and depumping towards the ^5S_2 state. The atoms are then pumped to the absolute ground state, and transferred into a crossed FORT in which they are evaporated. The fast loading of the 1D FORT (35 ms 1/e time), and the use of relatively fast evaporative ramps allow us to obtain in 20 s about 15000 atoms in an almost pure condensate.Comment: 4 pages, 4 figure

    Optical properties of an ensemble of G-centers in silicon

    Full text link
    We addressed the carrier dynamics in so-called G-centers in silicon (consisting of substitutional-interstitial carbon pairs interacting with interstitial silicons) obtained via ion implantation into a silicon-on-insulator wafer. For this point defect in silicon emitting in the telecommunication wavelength range, we unravel the recombination dynamics by time-resolved photoluminescence spectroscopy. More specifically, we performed detailed photoluminescence experiments as a function of excitation energy, incident power, irradiation fluence and temperature in order to study the impact of radiative and non-radiative recombination channels on the spectrum, yield and lifetime of G-centers. The sharp line emitting at 969 meV (∌\sim1280 nm) and the broad asymmetric sideband developing at lower energy share the same recombination dynamics as shown by time-resolved experiments performed selectively on each spectral component. This feature accounts for the common origin of the two emission bands which are unambiguously attributed to the zero-phonon line and to the corresponding phonon sideband. In the framework of the Huang-Rhys theory with non-perturbative calculations, we reach an estimation of 1.6±\pm0.1 \angstrom for the spatial extension of the electronic wave function in the G-center. The radiative recombination time measured at low temperature lies in the 6 ns-range. The estimation of both radiative and non-radiative recombination rates as a function of temperature further demonstrate a constant radiative lifetime. Finally, although G-centers are shallow levels in silicon, we find a value of the Debye-Waller factor comparable to deep levels in wide-bandgap materials. Our results point out the potential of G-centers as a solid-state light source to be integrated into opto-electronic devices within a common silicon platform

    Accumulation and thermalization of cold atoms in a finite-depth magnetic trap

    Get PDF
    We experimentally and theoretically study the continuous accumulation of cold atoms from a magneto-optical trap (MOT) into a finite depth trap, consisting in a magnetic quadrupole trap dressed by a radiofrequency (RF) field. Chromium atoms (52 isotope) in a MOT are continuously optically pumped by the MOT lasers to metastable dark states. In presence of a RF field, the temperature of the metastable atoms that remain magnetically trapped can be as low as 25 microK, with a density of 10^17 atoms.m-3, resulting in an increase of the phase-space density, still limited to 7.10^-6 by inelastic collisions. To investigate the thermalization issues in the truncated trap, we measure the free evaporation rate in the RF-truncated magnetic trap, and deduce the average elastic cross section for atoms in the 5D4 metastable states, equal to 7.0 10^-16m2.Comment: 9 pages, 10 Figure

    Control of dipolar relaxation in external fields

    Full text link
    We study dipolar relaxation in both ultra-cold thermal and Bose-condensed chromium atom gases. We show three different ways to control dipolar relaxation, making use of either a static magnetic field, an oscillatory magnetic field, or an optical lattice to reduce the dimensionality of the gas from 3D to 2D. Although dipolar relaxation generally increases as a function of a static magnetic field intensity, we find a range of non-zero magnetic field intensities where dipolar relaxation is strongly reduced. We use this resonant reduction to accurately determine the S=6 scattering length of chromium atoms: a6=103±4a0a_6 = 103 \pm 4 a_0. We compare this new measurement to another new determination of a6a_6, which we perform by analysing the precise spectroscopy of a Feshbach resonance in d-wave collisions, yielding a6=102.5±0.4a0a_6 = 102.5 \pm 0.4 a_0. These two measurements provide by far the most precise determination of a6a_6 to date. We then show that, although dipolar interactions are long-range interactions, dipolar relaxation only involves the incoming partial wave l=0l=0 for large enough magnetic field intensities, which has interesting consequences on the stability of dipolar Fermi gases. We then study ultra-cold chromium gases in a 1D optical lattice resulting in a collection of independent 2D gases. We show that dipolar relaxation is modified when the atoms collide in reduced dimensionality at low magnetic field intensities, and that the corresponding dipolar relaxation rate parameter is reduced by a factor up to 7 compared to the 3D case. Finally, we study dipolar relaxation in presence of radio-frequency (rf) oscillating magnetic fields, and we show that both the output channel energy and the transition amplitude can be controlled by means of rf frequency and Rabi frequency.Comment: 25 pages, 17 figure

    Averaging out magnetic forces with fast rf-sweeps in an optical trap for metastable chromium atoms

    Full text link
    We introduce a novel type of time-averaged trap, in which the internal state of the atoms is rapidly modulated to modify magnetic trapping potentials. In our experiment, fast radiofrequency (rf) linear sweeps flip the spin of atoms at a fast rate, which averages out magnetic forces. We use this procedure to optimize the accumulation of metastable chomium atoms into an optical dipole trap from a magneto-optical trap. The potential experienced by the metastable atoms is identical to the bare optical dipole potential, so that this procedure allows for trapping all magnetic sublevels, hence increasing by up to 80 percent the final number of accumulated atoms.Comment: 4 pages, 4 figure

    Accumulation of chromium metastable atoms into an Optical Trap

    Full text link
    We report the fast accumulation of a large number of metastable 52Cr atoms in a mixed trap, formed by the superposition of a strongly confining optical trap and a quadrupolar magnetic trap. The steady state is reached after about 400 ms, providing a cloud of more than one million metastable atoms at a temperature of about 100 microK, with a peak density of 10^{18} atoms.m^{-3}. We have optimized the loading procedure, and measured the light shift of the 5D4 state by analyzing how the trapped atoms respond to a parametric excitation. We compare this result to a theoretical evaluation based on the available spectroscopic data for chromium atoms.Comment: 7 pages, 5 Figure

    Radio-frequency induced ground state degeneracy in a Chromium Bose-Einstein condensate

    Full text link
    We study the effect of strong radio-frequency (rf) fields on a chromium Bose-Einstein condensate (BEC), in a regime where the rf frequency is much larger than the Larmor frequency. We use the modification of the Land\'{e} factor by the rf field to bring all Zeeman states to degeneracy, despite the presence of a static magnetic field of up to 100 mG. This is demonstrated by analyzing the trajectories of the atoms under the influence of dressed magnetic potentials in the strong field regime. We investigate the problem of adiabaticity of the rf dressing process, and relate it to how close the dressed states are to degeneracy. Finally, we measure the lifetime of the rf dressed BECs, and identify a new rf-assisted two-body loss process induced by dipole-dipole interactions.Comment: 4 pages, 4 figure

    Tunneling control and localization for Bose-Einstein condensates in a frequency modulated optical lattice

    Full text link
    The similarity between matter waves in periodic potential and solid-state physics processes has triggered the interest in quantum simulation using Bose-Fermi ultracold gases in optical lattices. The present work evidences the similarity between electrons moving under the application of oscillating electromagnetic fields and matter waves experiencing an optical lattice modulated by a frequency difference, equivalent to a spatially shaken periodic potential. We demonstrate that the tunneling properties of a Bose-Einstein condensate in shaken periodic potentials can be precisely controlled. We take additional crucial steps towards future applications of this method by proving that the strong shaking of the optical lattice preserves the coherence of the matter wavefunction and that the shaking parameters can be changed adiabatically, even in the presence of interactions. We induce reversibly the quantum phase transition to the Mott insulator in a driven periodic potential.Comment: Laser Physics (in press

    CARIOQA: Definition of a Quantum Pathfinder Mission

    Full text link
    A strong potential gain for space applications is expected from the anticipated performances of inertial sensors based on cold atom interferometry (CAI) that measure the acceleration of freely falling independent atoms by manipulating them with laser light. In this context, CNES and its partners initiated a phase 0 study, called CARIOQA, in order to develop a Quantum Pathfinder Mission unlocking key features of atom interferometry for space and paving the way for future ambitious space missions utilizing this technology. As a cornerstone for the implementation of quantum sensors in space, the CARIOQA phase 0 aimed at defining the Quantum Pathfinder Mission's scenario and associated performance objectives. To comply with these objectives, the payload architecture has been designed to achieve long interrogation time and active rotation compensation on a BEC-based atom interferometer. A study of the satellite architecture, including all the subsystems, has been conducted. Several technical solutions for propulsion and attitude control have been investigated in order to guarantee optimal operating conditions (limitation of micro-vibrations, maximization of measurement time). A preliminary design of the satellite platform was performed.Comment: Proceedings of International Conference on Space Optics (ICSO) 2022; 3-7 October 2022; Dubrovnik; Croati
    • 

    corecore